Будущее уже за углом. Как выглядит сборка термоядерного реактора ITER

Источник материала:  
03.09.2020 08:00 — Разное

Голубая мечта физиков и энергетиков становится все ближе к осуществлению. Лидеры Евросоюза, Китая, Индии, Японии, Кореи, России и США 28 июля объявили о начале новой энергетической эры. Эту эру знаменует собой официальный старт сборки самого большого в мире термоядерного реактора, который расположится на юге Франции. Речь идет об ITER — самой грандиозной научной стройке современности, перед которой стоит задача отработать технологии и устранить практические проблемы на пути получения энергии из управляемого термоядерного синтеза.

Об этой стройке, ее предпосылках и теоретических основах добычи энергии путем термоядерного синтеза мы рассказывали в одной из предыдущих публикаций. Освежить ее в памяти можно по ссылке.

Вкратце напомним о том, как работает термоядерный синтез:

По расчетам ученых, ITER будет производить порядка 500 мегаватт тепловой энергии. Реактор экспериментальный, а потому установка турбины на него не предусмотрена. При непрерывной эксплуатации и подключении станции к электросети на выходе получится 200 мегаватт электроэнергии. Этого могло бы хватить примерно на 200 тыс. домов.

Будущее уже за углом. Как выглядит сборка термоядерного реактора ITER
1. Вакуумная камера, где и обитает плазма. 2. Инжектор нейтрального луча и радиочастотный нагрев плазмы до 150 млн градусов. 3. Сверхпроводящие магниты, которые обуздают плазму. 4. Бланкеты, защищающие камеру и магниты от бомбардировки нейтронами и нагрева. 5. Дивертор, который отводит тепло и продукты термоядерной реакции. 6. Инструменты диагностики для изучения физики плазмы (включают манометры и нейтронные камеры). 7. Криостат — огромный термос с глубоким вакуумом, который защищает от нагрева магниты и вакуумную камеру

Коммерческий вариант термоядерного реактора будет обладать плазменной камерой большего объема, что в теории способно обеспечить в 10—15 раз бо́льшую выработку электричества.

С момента публикации нашей статьи прошло два года. Грандиозный и очень сложный проект пускай медленно и сложно, но продвигается. И одна из последних важных вех достигнута: началась сборка непосредственно самого реактора, где и будет происходить живительная реакция синтеза с выделением огромного объема энергии.

За последние несколько месяцев на место монтажа реактора были доставлены все его будущие составные части. Во многих случаях речь шла о компонентах весом в несколько сот тонн каждый и длинной более 15 метров. Более пяти лет их создавали в университетах и национальных лабораториях, производили на фабриках.

Они летели, плыли и ехали со всех уголков мира: все-таки задача реализации столь сложного проекта не под силу какой-то одной, даже самой продвинутой стране. А потому в исследовательском проекте ITER принимают участие партнеры из 35 стран мира. Напомним, что и бюджет этой научной стройки крайне высок — более $19 млрд.

Такая международная заинтересованность проектом объясняется тем, что прорывные инновационные разработки, которые будут выполнены в рамках ITER, сыграют ключевую роль в решении глобальной проблемы изменения климата и создании устойчивого безуглеродного общества. Об этом, в частности, месяц назад говорил премьер-министр Японии Синдзо Абэ.

Каждый компонент будущего реактора должен отвечать очень строгим спецификациям: все же стоит задача собрать во Франции самую сложную трехмерную головоломку. И все детали должны подходить друг к другу, чтобы в плотном графике сборки не возникало заторов.

С чего началась сборка

На сайте ITER утверждается, что реактор будет состоять примерно из миллиона деталей. Параллельно с его сборкой и установкой будет вестись интеграция различных систем: радиочастотный обогрев, топливный цикл, криогенные, вакуумные, контрольные и другие системы. Речь идет о сотнях тысяч монтажных работ, тщательно спланированных и организованных инженерами.

Непосредственно саму сборку сердца ITER начали с криостата — этот самый большой из когда-либо построенных в мире «термосов» делали в Индии. Криостат, в который будет заключен вакуумный бублик с плазмой (тот самый токамак), в диаметре и в высоту достигает 30 метров, его объем — 16 тыс. кубических метров.

Выполнен криостат из нержавеющей стали. Он состоит из четырех частей: основания, нижнего, верхнего цилиндров и верхней крышки.

Будущее уже за углом. Как выглядит сборка термоядерного реактора ITER
Индийские работники закончили сборку крышки
Будущее уже за углом. Как выглядит сборка термоядерного реактора ITER
Одна из частей криостата в фабричной упаковке

Одно только основание криостата весит 1250 тонн. Оно является самым тяжелым компонентом ITER, и его первым установили на место. В целом весь криостат весит 3850 тонн.

В криостате насчитывается 23 отверстия, предназначенных для обслуживания, а также еще 200 отверстий (некоторые размером в 4 метра) для доступа к системам охлаждения, магнитным питателям, дополнительному нагревателю и так далее.

Основание криостата было завершено в июле прошлого года. Его установили в монтажный карьер токамака 26 мая. Находившиеся там сотрудники говорили, что этот процесс чем-то напоминал фильмы Спилберга. По форме основание похоже на корабль пришельцев.

Будущее уже за углом. Как выглядит сборка термоядерного реактора ITER

И по своему значению процесс был чем-то фантастичным: со скоростью метр в минуту тысячетонная деталь проплыла на высоте 24 метров в величественных залах сборки. Всего от зала сборки к залу непосредственной установки реактора она преодолела 110 метров.

Там произошла еще одна ювелирная операция — основание криостата, почти касаясь стенок, начали опускать в глубокий бетонный цилиндр — опорную систему всей будущей установки.

Что дальше?

Компоненты поступают в зал сборки через очистное сооружение, где их распаковывают и очищают сжатым воздухом, деминерализованной водой или специальными моющими средствами. Это своеобразный шлюз между местом сборки и внешней средой.

В этих залах находится система кранов, с помощью которой складируют грузы, а потом перемещают их к месту установки. Это 170-метровый мостовой кран и два 750-тонных крана.

Будущее уже за углом. Как выглядит сборка термоядерного реактора ITER
Нижний цилиндр криостата

Следом за установкой основания криостата будут смонтированы его нижний цилиндр, термальный щит, временная поддержка для самой нижней полоидальной катушки, центральная ось и первая катушка, то есть магнит. Они будут придавать форму, удерживать и контролировать разогретую плазму. Чтобы добиться сверхпроводимости, изнутри они будут охлаждаться жидким гелием с температурой −269 градусов по Цельсию. Криогенная установка (крупнейшая в мире) завершена уже на 60% — на ней будут производить жидкий гелий. Оборудование поставляется из Китая, Индии, Швеции, Чехии, Финляндии, Италии, Японии, Франции.

Магниты будут трех типов. Например, катушки тороидального поля делали в Европе и Японии. Компоненты для них поступали из Китая, Южной Кореи и России. В создании 18 катушек, каждая из которых имеет размер с четырехэтажный дом и вес 360 тонн, принимали участие около 40 разных компаний. Эти катушки будут удерживать ионизированные частицы плазмы. Первые две уже приехали в апреле из Японии и Италии.

Будущее уже за углом. Как выглядит сборка термоядерного реактора ITER
Первый корпус тороидальной катушки. Первый из 18 гигантских магнитов. Одну половину сделали в Японии, другую — в Корее

Катушки полоидального поля будут расположены поверх предыдущих. Они должны будут отдалить плазменный шнур от стенок камеры. Всего будет шесть таких кольцевидных катушек диаметром от 10 до 24 метров и весом до 400 тонн. Первая уже приехала в мае из Китая, вторую делали прямо на месте, во Франции. Также в создании принимает участие Россия.

Вакуумную камеру, тот самый полый бублик, внутри которого и будет гореть плазма, производят в Европе и Южной Корее, часть компонентов поставляет Россия. Первая из девяти секций вакуумной камеры прибыла во Францию 21 июля, в августе к ней присоединилась корейская секция.

Будущее уже за углом. Как выглядит сборка термоядерного реактора ITER
Одна из секций камеры

На сборку было отведено четыре с половиной года, однако любая ошибка в столь сложном проекте может дорого обойтись. На декабрь 2025-го запланирован пуск первой плазмы в реакторе, который продемонстрирует работоспособность машины. Планируется, что работать на термоядерной энергии установка начнет в июне 2035 года. До этого предстоит завершить еще несколько крупных этапов, которые приведут станцию в полностью рабочее состояние.

светодиодная лампа, 550 Лм, поверхность прозрачная, напряжение 220 В

Читайте также:

 (оригинал новости)
←Канопацкая: Беларусь столкнется с угрозой сохранения государственности

Лента Новостей ТОП-Новости Беларуси
Яндекс.Метрика